Sugiyama, M., Bao, H., Ishida, T., Lu, N., Sakai, T., & Niu, G. Machine Learning from Weak Supervision: An Empirical Risk Minimization Approach, MIT Press, Cambridge, MA, USA, 2022. [link]
PhD Thesis
Excess Risk Transfer and Learning Problem Reduction towards Reliable Machine Learning, UTokyo Repository, 2022. Date of granted: 2022/03/24, Japanese title: "信頼性の高い機械学習を目指した剰余リスク転移と学習問題の帰着" [link]
Shimada, T., Bao, H., Sato, I., & Sugiyama, M. Classification from Pairwise Similarities/Dissimilarities and Unlabeled Data via Empirical Risk Minimization. Neural Computation 33(5):1234-1268, 2021. [link][arXiv]
Bao, H., Sakai, T., Sato, I., & Sugiyama, M. Convex Formulation of Multiple Instance Learning from Positive and Unlabeled Bags. Neural Networks 105:132-141, 2018. [link][arXiv]
Conference Proceedings (refereed)
Sakaue, S., Bao, H., Tsuchiya, T., & Oki, T. Online Structured Prediction with Fenchel–Young Losses and Improved Surrogate Regret for Online Multiclass Classification with Logistic Loss. In Proceedings of 37th Annual Conference on Learning Theory (COLT2024) PMLR 247:4458-4486, Edmonton, Canada, Jun. 30-Jul. 3, 2024. [link][arXiv]
Takezawa, Y.*, Sato, R.*, Bao, H., Niwa, K., & Yamada, M. Beyond Exponential Graph: Communication-Efficient Topologies for Decentralized Learning via Finite-time Convergence. Advances in Neural Information Processing Systems 36, 76692-76717, New Orleans, LA, USA, Dec. 10-16, 2023. [link][arXiv][github] (* equal contribution)
Nakamura, S., Bao, H., & Sugiyama, M. Robust Computation of Optimal Transport by β-potential Regularization. In Proceedings of 14th Asian Conference on Machine Learning (ACML2022) PMLR 189:770-785, Hyderabad, India, Dec. 12-14, 2022. [link][arXiv]
Bao, H., Scott, C., & Sugiyama, M. Calibrated Surrogate Losses for Adversarially Robust Classification. In Proceedings of 33rd Annual Conference on Learning Theory (COLT2020), PMLR 125:408-451, online, Jul. 9-12, 2020. [link][arXiv (corrigendum)][slides] (arXiv version contains a corrigendum; the definition of calibrated losses is modified)
Kuroki, S., Charoenphakdee, N., Bao, H., Honda, J., Sato, I., & Sugiyama, M. Unsupervised Domain Adaptation Based on Source-guided Discrepancy. In Proceedings of 33rd AAAI Conference on Artificial Intelligence (AAAI2019), 33 01:4122-4129, Honolulu, HI, USA, Jan. 27-Feb. 1, 2019. [link][arXiv]