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Summary

e Problem: model binary outcomes, specifically estimate P(Y =1 | x)
e Common approach: logistic regression

© identifiability of model parameter

@ link misspecification due to symmetry of link

e Existing remedy: replace logit link with more flexible link family
© resolve link misspecification by model selection

@ maximum log-likelihood is no longer convex

¢ Proposal: Fenchel-Young loss + flexible link = convex loss
Implementation available: http://bit.ly/gh-GEV-FY

Introduction

- Logistic regression N
1
Y =1|x~Bernoulli(n) where n= yw (B x) = —
inverse link 1+ e_ﬁ* ¥

Widely used for modeling binary outcomes (e.g. epidemiology), where l//_l(ﬁTx) mod-
els P(Y =1 | X = x), but unable to accommodate skewed link functions (e.g. class

imbalance)
— Needs more flexible link!

inverse logit link with different 3, skewed inverse link

_i_
B.x

- GEV (generalized extreme value) link family [1] \

y ' (0) =exp ((14—59);1/5) I

(&: shape parameter)

one parameter ¢ controls skewness of link, 0

\which can be chosen via model selection )

Fitting: MLE with logit link is convex, while GEV link results in a non-convex problem
: _ T . _ T .
HEHZ —log vy~ '(B x)"(1—y (B x;))' ™
l log loss

Q. Any convex loss for GEV link?

log loss + logit link log loss + GEV link (£ = 0.5)
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Background: Fenchel-Young Loss

A framework to generate a loss from an entropic regularizer of prediction function, which

maps logit 8 € R to probabilistic prediction yo(0) € |0, 1]:

ya(0) = argmax 6n — Q(n)
ne(0,1]
entropy
1 if n > 1/2 otherwise 0
- Fenchel-Young loss .

Let Q:[0,1] — R be a regularizer, y € {0,1} be a label, and 8 € R be a logit score.
Then, Fenchel-Young loss £ (0;y) generated by Q is

Comparison with Proper Loss

Canonical proper composite loss is another framework to ensure loss convexity

- Proper composite loss [3] N

o loss £(1;m) is proper if L(n;n) =L(n) (1,1 € [0,1])
(L(M;n) = Evy[€(n;n)]: conditional risk, L(1) = inf; L(7;N): Bayes risk)

e /(w~1(8);n) is proper composite for inverse link w1 and proper loss ¢
o (/,y) is a canonical pair if yw=—VL

la(6;y) o Q*(0)+ Q(y) — 0y; where Q*(0) = sup 0n—Q(n).
ne(0,1]
Property Example
e Convexity in 0 Q lo Y0
® ero-loss: Shannon logistic softmax
la(0:y) =0 & y=ya(0) 2-Tsallis modified Huber sparsemax

Q. How to derive a regularizer Q2 that we desire?

Our ldea: Generate Loss from Link

A. Integrate link function v to derive Q
by identifying inverse link ! and prediction function yq

Entropy B dual S Cumulant
£2(n) €27(0)
an Vel
Link (inverse) Inverse Link
(n) p=H(0) = Ya(0)

Figure 1: The relationship obtained thanks to convex analysis and Danskin's theorem

In case of GEV link,
n 1
ﬂ(n)=/0 l/f(n)dnZE(F(I—é,—logn)—n),

0 [(—&,(14+E0)71s) ifo <1
—eo 0+T(-&,0)+& 1 if o> -1/
(6 <1, I''is incomplete Gamma function)
- Good property: partial separation margin \

GEV Fenchel-Young loss (§ > 0) attains £o(0;y = 0) = 0 with some finite logit

— penalize logit of y =1 (rare class) heavier hence beneficial for class imbalance

lo(6;1)
- |
\ —— GEV-Fenchel-Young

------ Logistic / Yo has this property if support of
\ P suppolt of logistic dis¥ > l//_l Is bounded at left end

..... \ < suppprt gﬁG'E\//dgt. >
............. ,BTQZ‘ et / ,BTw

lo(0;0)

e /(y~1(8;7m)) is convex in O € Im(y) if (¢,y) is canonical

00:1) | € =05 0(0:0) / € = 0.5
4- == Fenchel-Young 4- === Fenchel-Young 4~
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Figure 2: Comparison of canonical loss and Fenchel-Young loss generated from GEV link

® Fenchel-Young loss matches canonical proper loss for 6 € Im(y)
e Canonical proper loss is no longer convex in 6 € R

—> Fenchel-Young loss systematically extrapolate canonical proper loss!
(which is convenient for flexible links such as Im(y) # R)

Simulation

mm—— = | ogistic

Setup: compare logit and GEV link with different —— cevreons

T

7 =P(Y =1) and sample size n
e Data: X | Y=y~ A4 (2y—1,0.4)
e Optimization: 100 epochs with Adam (Ir = 1)

® C is fixed to 0.5
Result: GEV-Fenchel-Young loss is tolerant to heavy

imbalance (7w = 0.001) with large enough samples
(n = 10,000), while logistic loss is still biased (see
bottom figure)

Remark: larger experiments and F-measure opti-

mization are performed as well in the paper

(n,7) = (10,000,0.001)
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