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Summary
• Problem: model binary outcomes, specifically estimate P(Y = 1 | xxx)
• Common approach: logistic regression
� identifiability of model parameter
� link misspecification due to symmetry of link
• Existing remedy: replace logit link with more flexible link family
� resolve link misspecification by model selection
� maximum log-likelihood is no longer convex
• Proposal: Fenchel-Young loss + flexible link = convex loss
Implementation available: http://bit.ly/gh-GEV-FY

Introduction
Logistic regression� �

Y = 1 | xxx∼ Bernoulli(η) where η = ψ−1(βββ>∗ xxx)
inverse link

=
1

1+ e−βββ
>
∗ xxx

� �
Widely used for modeling binary outcomes (e.g. epidemiology), where ψ−1(βββ>xxx) mod-
els P(Y = 1 | X = xxx), but unable to accommodate skewed link functions (e.g. class
imbalance)
=⇒ Needs more flexible link!
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GEV (generalized extreme value) link family [1]� �

ψ
−1(θ) = exp

(
(1+ξ θ)

−1/ξ

+

)

(ξ : shape parameter)

one parameter ξ controls skewness of link,
which can be chosen via model selection
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� �
Fitting: MLE with logit link is convex, while GEV link results in a non-convex problem

min
βββ

∑
i
− log

log loss

ψ
−1(βββ>xxxi)

yi(1−ψ
−1(βββ>xxxi))

1−yi

Q. Any convex loss for GEV link?

y = 0y = 1

β>x

log loss + logit link

y = 0
y = 1

β>x

log loss + GEV link (ξ = 0.5)

Background: Fenchel-Young Loss [2]

A framework to generate a loss from an entropic regularizer of prediction function, which
maps logit θ ∈ R to probabilistic prediction ŷΩ(θ) ∈ [0,1]:

ŷΩ(θ) = argmax
η∈[0,1]

θη

1 if η > 1/2 otherwise 0

− Ω(η)

entropy

Fenchel-Young loss� �
Let Ω : [0,1]→ R be a regularizer, y ∈ {0,1} be a label, and θ ∈ R be a logit score.
Then, Fenchel-Young loss `Ω(θ ;y) generated by Ω is

`Ω(θ ;y) def
= Ω

?(θ)+Ω(y)−θy; where Ω
?(θ) = sup

η∈[0,1]
θη−Ω(η).

� �
Property
• Convexity in θ

• Zero-loss:
`Ω(θ ;y) = 0 ⇔ y = ŷΩ(θ)

Example
Ω `Ω ŷΩ

Shannon logistic softmax
2-Tsallis modified Huber sparsemax

Q. How to derive a regularizer Ω that we desire?

Our Idea: Generate Loss from Link
A. Integrate link function ψ to derive Ω

by identifying inverse link ψ−1 and prediction function ŷΩ

Entropy
Ω(η)

Link
ψ(η)

Cumulant
Ω?(θ)

Inverse Link
ψ−1(θ) = ŷΩ(θ)

∇η ∇θ

dual

inverse

Figure 1: The relationship obtained thanks to convex analysis and Danskin’s theorem

In case of GEV link,

Ω(η) =
∫

η

0
ψ(η)dη =

1
ξ
(Γ(1−ξ ,− logη)−η) ,

Ω
?(θ) =

∫
θ

−∞

ψ
−1(θ)dθ =





Γ(−ξ ,(1+ξ θ)−1/ξ) if θ ≤−1/ξ

θ +Γ(−ξ ,0)+ξ−1 if θ >−1/ξ .

(ξ < 1, Γ is incomplete Gamma function)
Good property: partial separation margin� �

GEV Fenchel-Young loss (ξ > 0) attains `Ω(θ ;y = 0) = 0 with some finite logit
=⇒ penalize logit of y = 1 (rare class) heavier hence beneficial for class imbalance

β>x

`Ω(θ; 1)

GEV-Fenchel-Young

Logistic

β>x

support of GEV dist.

support of logistic dist.

`Ω(θ; 0)

`Ω has this property if support of
ψ−1 is bounded at left end

� �

Comparison with Proper Loss
Canonical proper composite loss is another framework to ensure loss convexity
Proper composite loss [3]� �

• loss `(η̂ ;η) is proper if L(η ;η) = L(η) (η̂ ,η ∈ [0,1])
(L(η̂ ;η) = EY∼η[`(η̂ ;η)]: conditional risk, L(η) = infη̂ L(η̂ ;η): Bayes risk)

• `(ψ−1(θ);η) is proper composite for inverse link ψ−1 and proper loss `
• (`,ψ) is a canonical pair if ψ =−∇L
• `(ψ−1(θ ;η)) is convex in θ ∈ Im(ψ) if (`,ψ) is canonical� �
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Figure 2: Comparison of canonical loss and Fenchel-Young loss generated from GEV link

• Fenchel-Young loss matches canonical proper loss for θ ∈ Im(ψ)

• Canonical proper loss is no longer convex in θ ∈ R

=⇒ Fenchel-Young loss systematically extrapolate canonical proper loss!
(which is convenient for flexible links such as Im(ψ) 6= R)

Simulation
Setup: compare logit and GEV link with different
π = P(Y = 1) and sample size n

• Data: X | Y = y∼N (2y−1,0.4)
• Optimization: 100 epochs with Adam (lr = 1)
• ξ is fixed to 0.5

Result: GEV-Fenchel-Young loss is tolerant to heavy
imbalance (π = 0.001) with large enough samples
(n = 10,000), while logistic loss is still biased (see
bottom figure)
Remark: larger experiments and F-measure opti-
mization are performed as well in the paper
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True

(n,π) = (3,000,0.005)

(n,π) = (3,000,0.001)

(n,π) = (10,000,0.001)

References
[1] Wang, X. and Dey, D. K. (2010). Generalized extreme value regression for binary response data: An application to B2B

electronic payments system adoption. The Annals of Applied Statistics.
[2] Blondel, M., Martins, A. F., and Niculae, V. (2020). Learning with Fenchel-Young losses. Journal of Machine Learning

Research.
[3] Reid, M. D. and Williamson, R. C. (2010). Composite binary losses. Journal of Machine Learning Research.

http://bit.ly/gh-GEV-FY

