

Summary

- Problem: model binary outcomes, specifically estimate $\mathbb{P}(Y = 1 | x)$
- Common approach: logistic regression
- ⓒ identifiability of model parameter
- ③ link misspecification due to symmetry of link
- Existing remedy: replace logit link with more flexible link family ③ resolve link misspecification by model selection
- S maximum log-likelihood is no longer convex

• Proposal: Fenchel-Young loss + flexible link = convex loss Implementation available: http://bit.ly/gh-GEV-FY

Introduction

Logistic regression

$$Y = 1 | \boldsymbol{x} \sim \text{Bernoulli}(\boldsymbol{\eta}) \text{ where } \boldsymbol{\eta} = \boldsymbol{\psi}^{-1}(\boldsymbol{\beta}_*^{\top})$$

Widely used for modeling binary outcomes (e.g. epidemiology), where $\psi^{-1}(\beta x)$ models $\mathbb{P}(Y = 1 \mid X = x)$, but unable to accommodate skewed link functions (e.g. class imbalance)

 \implies Needs more flexible link!

GEV (generalized extreme value) link family [1]

$$\boldsymbol{\psi}^{-1}(\boldsymbol{\theta}) = \exp\left(\left(1 + \boldsymbol{\xi}\boldsymbol{\theta}\right)_{+}^{-1/\boldsymbol{\xi}}\right)$$

(ξ : shape parameter)

one parameter ξ controls skewness of link, which can be chosen via model selection

Fenchel-Young Losses with Skewed Entropies for Class-posterior Probability Estimation

Han Bao^{1,2}, Masashi Sugiyama^{2,1} ¹The University of Tokyo ²RIKEN, Japan

Background: Fenchel-Young Loss [2]

A framework to generate a loss from an entropic regularizer of *prediction function*, which maps logit $\theta \in \mathbb{R}$ to probabilistic prediction $\widehat{y}_{\Omega}(\theta) \in [0,1]$:

> $\widehat{y}_{\Omega}(\theta) =$ arg max $heta\eta$ $\eta \in [0,1]$ 1 if $\eta > 1/2$ otherwise 0

Fenchel-Young loss

Let $\Omega: [0,1] \to \mathbb{R}$ be a regularizer, $y \in \{0,1\}$ be a label, and $\theta \in \mathbb{R}$ be a logit score. Then, *Fenchel-Young loss* $\ell_{\Omega}(\theta; y)$ generated by Ω is

 $\ell_{\Omega}(\theta; y) \stackrel{\text{def}}{=} \Omega^{\star}(\theta) + \Omega(y) - \theta y; \quad \text{where} \quad \Omega$

Property

• Convexity in $ heta$	Ω	$\ell_{\mathbf{\Omega}}$	$\widehat{y}_{\mathbf{\Omega}}$
 Zero-loss: 	Shannon	logistic	softmax
$\ell_{\Omega}(\boldsymbol{\theta}; y) = 0 \iff y = \widehat{y}_{\Omega}(\boldsymbol{\theta})$	2-Tsallis	modified Huber	sparsemax

Example

Q. How to derive a regularizer Ω that we desire?

Our Idea: Generate Loss from Link

A. Integrate link function ψ to derive Ω by identifying inverse link ψ^{-1} and prediction function \widehat{y}_{Ω}

In case of GEV link,

$$\begin{split} \Omega(\eta) &= \int_0^{\eta} \psi(\eta) \mathrm{d}\eta = \frac{1}{\xi} (\Gamma(1-\xi, -\log\eta) - \eta), \\ \Omega^{\star}(\theta) &= \int_{-\infty}^{\theta} \psi^{-1}(\theta) \mathrm{d}\theta = \begin{cases} \Gamma(-\xi, (1+\xi\theta)^{-1/\xi}) & \text{if } \theta \leq -1/\xi \\ \theta + \Gamma(-\xi, 0) + \xi^{-1} & \text{if } \theta > -1/\xi. \end{cases}$$

$$\xi < 1$$
, Γ is incomplete Gamma function)

Good property: partial separation margin GEV Fenchel-Young loss ($\xi > 0$) attains $\ell_{\Omega}(\theta; y = 0) = 0$ with some finite logit \implies penalize logit of y = 1 (rare class) heavier hence beneficial for class imbalance

 $- \Omega(\eta)$ entropy

$$\mathbf{P}^{\star}(\boldsymbol{ heta}) = \sup_{\boldsymbol{\eta}\in[0,1]} \boldsymbol{ heta}\boldsymbol{\eta} - \boldsymbol{\Omega}(\boldsymbol{\eta}).$$

 ℓ_{Ω} has this property if support of Ψ^{-1} is bounded at left end

Canonical proper composite loss is another framework to ensure loss convexity **Proper composite loss** [3]

- loss $\ell(\widehat{\eta};\eta)$ is proper if $L(\eta;\eta) = \underline{L}(\eta) (\widehat{\eta},\eta \in [0,1])$ $(L(\widehat{\eta};\eta) = \mathbb{E}_{Y \sim \eta}[\ell(\widehat{\eta};\eta)]$: conditional risk, $\underline{L}(\eta) = \inf_{\widehat{\eta}} L(\widehat{\eta};\eta)$: Bayes risk)
- $\ell(\psi^{-1}(\theta); \eta)$ is proper composite for inverse link ψ^{-1} and proper loss ℓ • (ℓ, ψ) is a *canonical* pair if $\psi = -\nabla \underline{L}$
- $\ell(\psi^{-1}(\theta;\eta))$ is convex in $\theta \in Im(\psi)$ if (ℓ,ψ) is canonical

Figure 2: Comparison of canonical loss and Fenchel-Young loss generated from GEV link

- Fenchel-Young loss matches canonical proper loss for $oldsymbol{ heta}\in \mathsf{Im}(oldsymbol{\psi})$
- Canonical proper loss is no longer convex in $heta \in \mathbb{R}$

(which is convenient for flexible links such as $Im(\Psi) \neq \mathbb{R}$)

Setup: compare logit and GEV link with different $\pi = \mathbb{P}(\mathsf{Y} = 1)$ and sample size *n*

- Data: $X | Y = y \sim \mathcal{N}(2y 1, 0.4)$
- Optimization: 100 epochs with Adam (Ir = 1)
- ξ is fixed to 0.5

Result: GEV-Fenchel-Young loss is tolerant to heavy imbalance ($\pi=0.001$) with large enough samples (n = 10,000), while logistic loss is still biased (see bottom figure)

Remark: larger experiments and F-measure optimization are performed as well in the paper

- electronic payments system adoption. The Annals of Applied Statistics.
- Research.

Comparison with Proper Loss

 \implies Fenchel-Young loss systematically extrapolate canonical proper loss!

Simulation

References

[1] Wang, X. and Dey, D. K. (2010). Generalized extreme value regression for binary response data: An application to B2B

[2] Blondel, M., Martins, A. F., and Niculae, V. (2020). Learning with Fenchel-Young losses. *Journal of Machine Learning*

[3] Reid, M. D. and Williamson, R. C. (2010). Composite binary losses. *Journal of Machine Learning Research*.