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Introduction

Contrastive Unsupervised Representation Learning (CURL)
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performance for the downstream task.
[Chen et al., 2020]

Q. What is the underlying mechanism of the success?

Problem Setu [0 Based on [Arora et al., 2019]

Data Generating Process @ @
% Draw 1 positive/K negative classes c™, {cy }reix1 ~ P(Y) ! !
« Draw an anchor/positive sample x,x* ~ P(X|Y = c¢™) @ @ @ @

<+ Draw K negative samples x;, ~ P(X|Y = ¢}, ) anchor  positive negatives

Training Objective Downstream performance

Train the representation function f by
minimizing the following objective:

Evaluate the learned f by the
downstream mean supervised loss:
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Analysis

Existing Work: Collision-Coverage Formulation

Collision-Coverage Formulation

Rewrite the contrastive loss using the conditions anenor 1egaves
under which the label /coverage OoCcCurs. ® ¢ 04 o
.:. . : randomly drawn negative class collides Coverage
with the anchor class. anchor negatives
<+ Coverage: negative classes covers entire label e > ¢ ® . . . |o
space of the downstream classification.
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Issue: Disagreement with Experiment R ol

% Theory predicts the downstream performance degrades ||“| |||
with increase in K because of the , While  z«.
larger K helps performance in practice. = s

< Upper bound becomes exponentially loose in K. i
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[Chen et al., 2020]
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Our Approach: Surrogate Bound

Main Result

Directly transform the contrastive loss to the supervised loss by linearizing the log-
sum-exp functions.

Rcont(f) + AL < R,u—supv(f) < Rcont(f) + AU

1
AL:AU ZO(IHE)

<+ We can interpret the contrastive loss as the surrogate estimator of the mean
supervised loss in a sense that these two losses behave similarly.

<+ Coefficients of the bounds are constant with respect to C and K.
< Surrogate gap (intercept) decreases as K increases; agrees with experimental facts.
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Experiments

Synthetic Dataset
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Setting Result

< 2D synthetic dataset circle with € = 10. <« Our surrogate bounds capture the
<+ f:. 3-layer MLP (# hidden units is 256) learning dynamics well in different
with RelLLU activation. negative sample sizes.

Vision & Language Datasets

Setting

< Dataset: CIFAR-10/100 (vision) & Wiki-3029 (language).
<+ f: ResNet-18-based [He et al., 2016] (vision) & fasttext-based [Joulin et al., 2017] (language)

Vision Dataset Language Dataset

mean classifier linear classifier
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< EXxisting theories result in exponentially loose prediction of the downstream

supervised loss for the test data in the vision dataset.

<+ Proposed upper bound agrees with the actual supervised loss well in all range of K.
< Larger K moderately helps performance as predicted from our theory.

A. Contrastive loss behaves as the surrogate estimator.




