On the Surrogate Gap between Contrastive and Supervised Losses

Introduction

Contrastive Unsupervised Representation Learning (CURL)

Learning Scheme

CURL aims to learn a representation function f by making semantically similar (positive) pair closer while randomly drawn (negative) pair further.

Inference

By performing fine-tuning linear classifier on top of the learned **f**, we can get good empirical performance for the downstream task.

Problem Setup Based on [Arora et al., 2019]

Data Generating Process

- Draw 1 positive/K negative classes c^+ , $\{c_k^-\}_{k \in [K]} \sim \mathbb{P}(Y)$
- * Draw an anchor/positive sample $\mathbf{x}, \mathbf{x}^+ \sim \mathbb{P}(X|Y = c^+)$

 $\boldsymbol{\mu}_{c} = \mathbb{E}_{\mathbf{X}|c}[\mathbf{f}(\mathbf{X})]$

• Draw K negative samples $\mathbf{x}_k^- \sim \mathbb{P}(X|Y = c_k^-)$

Training Objective

Train the representation function **f** by minimizing the following objective:

$$R_{\text{cont}}(\mathbf{f}) = \mathbb{E}_{\substack{c^+, \{c_k^-\}\\\mathbf{x}, \mathbf{x}^+, \{\mathbf{x}_k^-\}}} \left[-\ln \frac{e^{\mathbf{f}(\mathbf{x})^\top \mathbf{f}(\mathbf{x}^+)}}{e^{\mathbf{f}(\mathbf{x})^\top \mathbf{f}(\mathbf{x}^+)} + \sum_{k \in [K]} e^{\mathbf{f}(\mathbf{x})^\top \mathbf{f}(\mathbf{x}_k^-)}} \right]$$

Notations

C: # classes *K*: # negative samples

Downstream performance

anchor

Evaluate the learned **f** by the downstream mean supervised loss:

$$R_{\mu-\operatorname{supv}}(\mathbf{f}) = \mathbb{E}_{\mathbf{x}, y \sim \mathbb{P}} \bigg|$$

 $\mathbf{W}^{\mu} = [\boldsymbol{\mu}_1 \dots \boldsymbol{\mu}_C]^{\top}$

$$\inf_{\mathbf{W} \in \mathbb{R}^{C \times h}} R_{s}$$

Han Bao^{* 12} Yoshihiro Nagano^{* 12} Kento Nozawa^{* 12} ¹The University of Tokyo, Japan / ²RIKEN AIP, Japan / *Equal contribution

[Chen et al., 2020]

 $e^{\mathbf{f}(\mathbf{x})^{\top}\boldsymbol{\mu}_{y}}$

 $-\ln \frac{e^{-\sum_{c \in \mathcal{Y}} p}}{\sum_{c \in \mathcal{Y}} e^{\mathbf{f}(\mathbf{x})^{\top} \boldsymbol{\mu}_{c}}}$

 $_{\rm supv}({\bf Wf}) \leq R_{\mu-{\rm supv}}({\bf f})$

Existing Work: Collision-Coverage Formulation

Collision-Coverage Formulation

Rewrite the contrastive loss using the conditions under which the label collision/coverage occurs.

- Collision: randomly drawn negative class collides with the anchor class.
- Coverage: negative classes covers entire label space of the downstream classification.

Issue: Disagreement with Experiment

- Theory predicts the downstream performance degrades with increase in K because of the label collision, while larger *K* helps performance in practice.
- Upper bound becomes exponentially loose in K.

	Upper Bound
$R_{\mu ext{-supv}}(\mathbf{f}) \leq$	$\frac{1}{(1-\tau_K)v_{K+1}} \left\{ R_{\text{cont}}(\mathbf{f}) - \mathbb{E}\ln(\text{Col}+1) \right\}$
	$\frac{1}{v_{K+1}} \{ 2R_{\text{cont}}(\mathbf{f}) - \mathbb{E}\ln(\text{Col}+1) \}$
	$\frac{2}{1-\tau_K} \left\lceil \frac{2(C-1)H_{C-1}}{K} \right\rceil \left\{ R_{\text{cont}}(\mathbf{f}) - \mathbb{E}\ln(\text{Col}) \right\}$

Our Approach: Surrogate Bound

Main Result

Directly transform the contrastive loss to the supervised loss by **linearizing the log**sum-exp functions.

 $R_{\rm cont}({\bf f}) + \Delta_L \leq R_{\mu-{\rm supv}}$

 $\Delta_L = \Delta_U = \mathbf{0}$

- We can interpret the contrastive loss as the surrogate estimator of the mean supervised loss in a sense that these two losses behave similarly.
- \diamond Coefficients of the bounds are constant with respect to C and K.
- \diamond Surrogate gap (intercept) decreases as K increases; agrees with experimental facts.

$$(\mathbf{f}) \le R_{\text{cont}}(\mathbf{f}) + \Delta_U$$

 $O\left(\ln\frac{1}{K}\right)$

Setting

- ♦ 2D synthetic dataset circle with C = 10. f: 3-layer MLP (# hidden units is 256) with ReLU activation.

Setting

A. Contrastive loss behaves as the surrogate estimator.

arXiv: 2110.02501

Result

Our surrogate bounds capture the learning dynamics well in different negative sample sizes.

Vision & Language Datasets

Dataset: CIFAR-10/100 (vision) & Wiki-3029 (language).

f: ResNet-18-based [He et al., 2016] (vision) & fasttext-based [Joulin et al., 2017] (language)

Existing theories result in exponentially loose prediction of the downstream supervised loss for the test data in the vision dataset.

 \diamond Proposed upper bound agrees with the actual supervised loss well in all range of K. \clubsuit Larger K moderately helps performance as predicted from our theory.