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Adversarial Attacks 2

Adding inperceptible small noise can fool classifiers!

Goodfellow, I. J., Shlens, J., & Szegedy, C. (2015). Explaining and harnessing adversarial examples. In ICLR, 2015.

[Goodfellow+ 2015]

original data perturbed data



Penalize Vulnerable Prediction 3

Usual Classification Robust Classification

no penalty penalized!no penalty no penalty

ℓ01(x, y, f ) = {1 if yf(x) ≤ 0
0 otherwise

usual 0-1 loss

ℓγ(x, y, f ) = {1 if ∃Δ ∈ 𝔹2(γ) . yf(x + Δ) ≤ 0
0 otherwise

robust 0-1 loss

prediction too close to boundary 
should be penalized

: -ball𝔹2(γ) = {x ∈ ℝd ∣ ∥x∥2 ≤ γ} γ



In Case of Linear Predictors 4

no penalty penalized!

θ⊤x > γ θ⊤x ≤ γ

ℓγ(x, y, f ) = {1 if ∃Δ ∈ 𝔹2(γ) . yf(x + Δ) ≤ 0
0 otherwise

robust 0-1 loss

linear predictors ℱlin = {x ↦ θ⊤x ∣ ∥θ∥2 = 1}

x

margin = θ⊤x

= 1{yf(x) ≤ γ} := ϕγ(yf(x))



Formulation of Classification 5

Usual Classification Robust Classification
minimize 0-1 risk minimize -robust 0-1 riskγ

Rϕ01
( f ) = 𝔼 [ϕ01(Yf(X))] Rϕγ

( f ) = 𝔼 [ϕγ(Yf(X))]
0-1 loss ϕ01(α) = 1{α ≤ 0}

ϕ01

correctwrong

robust 0-1 loss ϕγ(α) = 1{α ≤ γ}

ϕγ

correctwrong non-robust

 &  are not easy to optimize!ϕ01 ϕγ

(restricted to linear predictors)



What surrogate is desirable? 6

ϕ
Surrogate loss

easily optimizable

ϕ01

Target loss (0-1 loss)

final learning criterion

Rϕ( f )

R*ϕ

Rψ( f )

R*ψ
fm f∞…

surrogate risk

target risk

Calibrated surrogate



What surrogate is calibrated? 7

Usual Classification Robust Classification

0-1 loss ϕ01

correctwrong

robust 0-1 ϕγ

correctwrong non-robust

surrogate ϕ convex & 
ϕ′ (0) < 0

P. L. Bartlett, M. I. Jordan, & J. D. McAuliffe. (2006). 
Convexity, classification, and risk bounds. Journal of the American Statistical Association, 101(473), 138-156.

calibrated 
[Bartlett+ 2006]

surrogate ϕ

？

calibrated

https://people.eecs.berkeley.edu/~wainwrig/stat241b/bartlettetal.pdf


Short Course 
on Calibration Analysis 
̶ how to analyze loss calibration property ̶

Ingo Steinwart. 
How to compare different loss functions and their risks. 
Constructive Approximation, 2007.

https://link.springer.com/article/10.1007/s00365-006-0662-3


Conditional Risk and Calibration 9

Conditional Risk = Risk at a single x

Rϕ( f ) = 𝔼X [ ℙ(Y = + 1 |X)ϕ( f(X)) + ℙ(Y = − 1 |X)ϕ(−f(X)) ]

Cϕ(α, η) := ηϕ(α) + (1 − η)ϕ(−α)

 (class prob.) 
             (prediction)

ℙ(Y = + 1 |X) := η
f(X) := α

Definition.
if for any , there exists  such that for all  and , 

.
ε > 0 δ > 0 α ∈ Aℱ η ∈ [0,1]

Cϕ(α, η) − C*ϕ,ℱ(η) < δ ⟹ Cψ(α, η) − C*ψ,ℱ(η) < ε

 is ( , )-calibrated for a target loss ϕ ψ ℱ ψ

target excess conditional risksurrogate excess conditional risk

Aℱ := {f(x) ∣ f ∈ ℱ, x ∈ 𝒳}



Main Tool: Calibration Function

■ Provides iff condition 
▶ ( , )-calibrated   for all  

■ Provides excess risk bound 

▶ ( , )-calibrated  

ψ ℱ ⟺ δ(ε) > 0 ε > 0

ψ ℱ ⟹ Rψ( f ) − R*ψ ≤ (δ**)−1( Rϕ( f ) − R*ϕ )

10

target excess risk surrogate excess risk

monotonically 
increasing

 
: biconjugate of 

Aℱ := {f(x) ∣ f ∈ ℱ, x ∈ 𝒳}

δ** δ

Definition. (calibration function)

δ(ε) = inf
η∈[0,1]

inf
α∈Aℱ

Cϕ(η, α) − C*ϕ,ℱ(η) s.t. Cψ(η, α) − C*ψ,ℱ(η) ≥ ε

target excess conditional risksurrogate excess conditional risk



Example: Binary Classification ( )ϕ01
11

Theorem.  If surrogate  is convex, it is ( , )-calibrated iff 
▶ differentiable at 0 
▶

ϕ ϕ01 ℱall

ϕ′ (0) < 0 : all measurable functionsℱall

hinge loss

ε

δ
1

0 1

δ(ε) = εϕ(α) = [1 − α]+

squared loss

ε

δ
1

0 1

δ(ε) = ε2ϕ(α) = (1 − α)2

P. L. Bartlett, M. I. Jordan, & J. D. McAuliffe. (2006). 
Convexity, classification, and risk bounds. Journal of the American Statistical Association, 101(473), 138-156.

[Bartlett+ 2006]

https://people.eecs.berkeley.edu/~wainwrig/stat241b/bartlettetal.pdf


Analysis of 
Robust Classification

robust 0-1 ϕγ

correctwrong non-robust

surrogate
ϕ

Any convex 
surrogates?

calibrated

restricted to linear predictors



No convex calibrated surrogate 13

Theorem. Any convex surrogate is not ( , )-calibrated.ϕγ ℱlin

Proof Sketch

αγ−γ

correct wrong
non-robust

η ≈ 0
α

correct
non-robust

correct

η ≈ 1
2

α

correctwrong
non-robust

η ≈ 1

surrogate conditional risk is plotted

non-robust minimizer!

calibration function

δ(ε) = inf
η∈[0,1]

inf
α∈Aℱ

Cϕ(η, α) − C*ϕ,ℱ(η) s.t. Cϕγ
(η, α) − C*ϕγ,ℱ

(η) ≥ ε

convex in α  is non-robust|α | ≤ γ



How to find calibrated surrogate? 14

αγ−γ

correct wrong
non-robust

η ≈ 0
α

correct
non-robust

correct

η ≈ 1
2

α

correctwrong
non-robust

η ≈ 1

Idea. To make conditional risk not minimized in non-robust area

surrogate conditional risk is plotted

consider a surrogate  such that 
conditional risk is quasiconcave 

ϕ

all superlevels are convex



Example: Shifted Ramp Loss 15

ϕ(α) = clip[0,1] ( 1 − α
2 )

α1−1

Ramp loss

α1 + β−1 + β
ϕβ(α) = clip[0,1] ( 1 − α + β

2 ) +β

Shifted ramp loss

conditional risk ( )η > 1/2 calibration function

assume 0 < β < 1 − γ



Calibrated Surrogate Losses for  
Adversarially Robust Classification

16

Robust classification 
= minimize robust 0-1 loss

correctwrong non-robust

Calibrated surrogate loss

minimizing surrogate

minimizing target

⇐

No convex calibrated surrogate

under restriction to linear predictors

correct

non-robust

correct

ℙ(Y = + 1 |X ) =
1
2

under linear predictors

conditional risk

because minimizer lies in non-robust area

correct
non-robust

correct

Quasiconcavity is important

Example: 
shifted ramp loss


