Calibrated Surrogate Losses for Adversarially Robust Classification

Han Bao^{1,2}

Clayton Scott³ Masashi Sugiyama^{2,1}

- 1 The University of Tokyo
- 2 RIKEN AIP
- 3 University of Michigan

Jul. 9th - 12th @ COLT 2020

Adversarial Attacks

[Goodfellow+ 2015]

2

Adding inperceptible small noise can fool classifiers!

perturbed data

Goodfellow, I. J., Shlens, J., & Szegedy, C. (2015). Explaining and harnessing adversarial examples. In ICLR, 2015.

Penalize Vulnerable Prediction³

Usual Classification

Robust Classification

usual 0-1 loss
$$\ell_{01}(x, y, f) = \begin{cases} 1 \text{ if } yf(x) \le 0\\ 0 \text{ otherwise} \end{cases}$$

prediction too close to boundary should be penalized

$$\mathbb{B}_2(\gamma) = \{ x \in \mathbb{R}^d \mid ||x||_2 \le \gamma \}: \gamma\text{-ball}$$

In Case of Linear Predictors⁴

linear predictors $\mathcal{F}_{\text{lin}} = \{x \mapsto \theta^{\mathsf{T}} x \mid \|\theta\|_2 = 1\}$

robust 0-1 loss

$$\ell_{\gamma}(x, y, f) = \begin{cases} 1 & \text{if } \exists \Delta \in \mathbb{B}_{2}(\gamma) \, . \, yf(x + \Delta) \leq 0 \\ 0 & \text{otherwise} \end{cases} = \mathbf{1} \{ yf(x) \leq \gamma \} := \phi_{\gamma}(yf(x))$$

Formulation of Classification ⁵

Usual Classification

minimize 0-1 risk

 $R_{\phi_{01}}(f) = \mathbb{E}\left[\phi_{01}(Yf(X))\right]$

Robust Classification

minimize γ -robust 0-1 risk

$$R_{\phi_{\gamma}}(f) = \mathbb{E}\left[\phi_{\gamma}(Yf(X))\right]$$

(restricted to linear predictors)

(2) $\phi_{01} \& \phi_{\gamma}$ are not easy to optimize!

What surrogate is desirable?⁶

What surrogate is calibrated?⁷

P. L. Bartlett, M. I. Jordan, & J. D. McAuliffe. (2006). <u>Convexity, classification, and risk bounds</u>. *Journal of the American Statistical Association*, 101(473), 138-156.

Short Course on Calibration Analysis

— how to analyze loss calibration property —

Ingo Steinwart. <u>How to compare different loss functions and their risks</u>. *Constructive Approximation*, 2007.

Conditional Risk and Calibration

Conditional Risk = Risk at a single *x*

$$R_{\phi}(f) = \mathbb{E}_{X} \left[\mathbb{P}(Y = + 1 | X)\phi(f(X)) + \mathbb{P}(Y = -1 | X)\phi(-f(X)) \right]$$
$$\mathbb{P}(Y = +1 | X) := \eta \text{ (class prob.)}$$

 $f(X) := \alpha$

$$C_{\phi}(\alpha,\eta) := \eta \phi(\alpha) + (1-\eta)\phi(-\alpha)$$

Definition. ϕ is (ψ, \mathcal{F}) -**calibrated** for a target loss ψ if for any $\varepsilon > 0$, there exists $\delta > 0$ such that for all $\alpha \in A_{\mathcal{F}}$ and $\eta \in [0,1]$, $C_{\phi}(\alpha, \eta) - C^*_{\phi, \mathcal{F}}(\eta) < \delta \implies C_{\psi}(\alpha, \eta) - C^*_{\psi, \mathcal{F}}(\eta) < \varepsilon$. surrogate excess conditional risk target excess conditional risk

 $A_{\mathcal{F}} := \{ f(x) \mid f \in \mathcal{F}, x \in \mathcal{X} \}$

(prediction)

9

Main Tool: Calibration Function¹⁰

Provides iff condition

▶ (ψ , \mathcal{F})-calibrated $\iff \delta(\varepsilon) > 0$ for all $\varepsilon > 0$

 $A_{\mathcal{F}} := \{f(x) \mid f \in \mathcal{F}, x \in \mathcal{X}\}$ δ^{**} : biconjugate of δ

Example: Binary Classification (ϕ_{01})

[Bartlett+ 2006]

Theorem. If surrogate ϕ is convex, it is $(\phi_{01}, \mathcal{F}_{all})$ -calibrated iff

- differentiable at 0
- $\phi'(0) < 0$

 $\mathcal{F}_{\mathrm{all}}$: all measurable functions

P. L. Bartlett, M. I. Jordan, & J. D. McAuliffe. (2006). <u>Convexity, classification, and risk bounds</u>. *Journal of the American Statistical Association*, 101(473), 138-156.

Analysis of Robust Classification

restricted to linear predictors

No convex calibrated surrogate ¹³

Theorem. Any convex surrogate is not $(\phi_{\gamma}, \mathcal{F}_{\text{lin}})$ -calibrated.

Proof Sketch

surrogate conditional risk is plotted

How to find calibrated surrogate? ¹⁴

all superlevels are convex

Example: Shifted Ramp Loss¹⁵

conditional risk ($\eta > 1/2$)

calibration function

Calibrated Surrogate Losses for Adversarially Robust Classification

Robust classification

= minimize robust 0-1 loss

under restriction to linear predictors

Calibrated surrogate loss

No convex calibrated surrogate

under linear predictors

16

because minimizer lies in non-robust area

Quasiconcavity is important

Example: shifted ramp loss