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¢ Imitation Learning: Learn the decision making strategy (policy) o

experts from perfect demonstration.

® [ssues:
- Perfect demonstrations are costly when the task is difficult.
- Confidence scores can reweight the demonstration distribution to the optimal
one but labeling all demonstrations is also expensive.

= We consider demonstrations partially equipped with confidence
and propose two approaches to learning an optimal policy with

theoretical guarantee.

Background

e Policy (m): decision making strategy given state
e Demonstration: a set of state-action pairs x

e Generative Adversarial Imitation Learning [1]: Given perfect
demonstration drawn from p,, utilize GAN structure to learn an
optimal policy:

minmax E [logD,(x)] +

) w

X~Pog

0 : parameters of an agent policy, D

Expert Policy
g

[ 10g(1— D, ())]

- discriminator.

Cmm———— Agent Policy
Tlg
p(s,a)
Fap( 0 II SERE

p(s,a) Sample
2ap(s a)
Demonstration I Demonstration
e Occupancy Measure 7
Matching

¢ Imperfect demonstration: a mixture of optimal and

non-optimal demonstrations with density
p(x) = ap(xly = +1) + (1— a)p(x|ly = —1)

p(xly = +1): popi(x), p(xly = —1): puou(x), and a: Pr(y = +1).
e Confidence score [2]: r(x) = Pr(y = +1|x).
¢ Confidence collection:
T N(y=+1)
- crowdsourcing: g — v e —
- digitized score: 0.0,0.1,0.2,...,1.0

A demonstration mixture partially labeled with confidence
Human follows non-optimal policies

Policies

when they make mistakes or are distracted.
Input:

Unlabeled demonstration (.—*.) ~ P
Demonstration ( .+ . ) = 0‘7) ~ g

with confidence
Output: policy function
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Two-Step Importance Weighting Imitation Learning

Step 1 estimate confidence scores for unlabeled demonstration by

learning a confidence scoring function g. Unbiased risk estimator:

RSC,IZ(g) — 4:x,r~q[r ’ (l(g(x)))] + 41x,r'vq[ (1 T r)ﬁ(—g(x))]_
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Step 2 employ importance weighting to rewrite GAIL objective:
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Estimation error bound

Rsc,t(8) = Rscu(8*) =0p(n~ "2 + n "2 )
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GAIL with Imperfect Demonstration and Confidence

Mixing the agent demonstration (pg) with the non-optimal one
(pLon) gUarantees to Iearn the optimal policy.
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By optimizing V(D ), the discriminator recognizes py and p,, as the

V(Dy) = Ex~p[109(1—=Dw(x))] + aExnp,[ 109 Du(X)] + Exr~ql (1—

same class and p as the other.
With the same mixture weight a, p’ is able to match p and
meanwhile benefit from the large amount of unlabeled data.

Data generation:
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Demonstration Mixture
Confidence is given by a classifier trained with the demonstration

mixture labeled as optimal (y = +1) and non-optimal (y = —1).
Results:
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Robustness:
We also conduct experiment to investigate the influence of noisy
labelers and the number of unlabeled demonstration
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Our methods are robust to noisy labelers and unlabeled data plays
an important role to learn a better policy.
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