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Introduction
• Imitation Learning: Learn the decision making strategy (policy) of
experts from perfect demonstration.
• Issues:
– Perfect demonstrations are costly when the task is difficult.
– Confidence scores can reweight the demonstration distribution to the optimal
one but labeling all demonstrations is also expensive.

⇒We consider demonstrations partially equipped with confidence
and propose two approaches to learning an optimal policy with
theoretical guarantee.
Background

•Policy (π): decision making strategy given state
•Demonstration: a set of state-action pairs x

•Generative Adversarial Imitation Learning [1]: Given perfect
demonstration drawn from popt, utilize GAN structure to learn an
optimal policy:

min
θ
mx

w
E

x∼pθ
[ logDw(x)] + E

x ∼ popt
[ log(1− Dw(x))] .

θ : parameters of an agent policy, Dw : discriminator.

• Imperfect demonstration: amixture of optimal and
non-optimal demonstrations with density

p(x) = αp(x|y = +1) + (1− α)p(x|y = −1)

p(x|y = +1): popt(x), p(x|y = −1): pnon(x), and α: Pr(y = +1).
•Confidence score [2]: r(x) = Pr(y = +1|x).
•Confidence collection:
- crowdsourcing: N(y=+1)

N(y=+1)+N(y=−1)
- digitized score: 0.0,0.1,0.2, . . . , 1.0

Problem Setting

A demonstration mixture partially labeled with confidence
Human follows non-optimal policies
when they make mistakes or are distracted.
Input:

Output: policy function

Two-Step Importance Weighting Imitation Learning

Step 1 estimate confidence scores for unlabeled demonstration by
learning a confidence scoring function g. Unbiased risk estimator:

RSC,ℓ(g) = Ex,r∼q[r · (ℓ(g(x)))]⏟  ⏞  
Risk for optimal

+ Ex,r∼q[(1− r)ℓ(−g(x))]⏟  ⏞  
Risk for non-optimal

Step 2 employ importance weighting to rewrite GAIL objective:

min
θ
mx

w
E

x∼pθ
[ logDw(x)] + E

x ∼ p
[
r̂(x)

α
log(1− Dw(x))]

Estimation error bound

RSC,ℓ(ĝ) − RSC,ℓ(g∗)⏟  ⏞  
estimation error of risk

of empirical risk minimizer

= Op( n−1/2c⏟ ⏞ 
# of conf

+ n−1/2u⏟ ⏞ 
# of unlabeled

)

GAIL with Imperfect Demonstration and Confidence

Mixing the agent demonstration (pθ) with the non-optimal one
(pnon) guarantees to learn the optimal policy.

V(Dw) = Ex∼p[ log(1− Dw(x))] + αEx∼pθ[ logDw(x)] + Ex,r∼q[(1− r) logDw(x)]

By optimizing V(Dw), the discriminator recognizes pθ and popt as the
same class and p as the other.
With the same mixture weight α, p′ is able to match p and
meanwhile benefit from the large amount of unlabeled data.

Experiments

Data generation:

Confidence is given by a classifier trained with the demonstration
mixture labeled as optimal (y = +1) and non-optimal (y = −1).
Results:
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Robustness:
We also conduct experiment to investigate the influence of noisy
labelers and the number of unlabeled demonstration
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Our methods are robust to noisy labelers and unlabeled data plays
an important role to learn a better policy.
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