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Introduction
Similarity in machine learning� �

Figure 1: Co-occurring words are often regarded as “similar.” [3]

• Pairwise supervision: (dis)similar pairs of patterns
• Available in many domains such as geographical analysis, chemical

experiments, computer vision, natural language processing, etc.� �
Similarity learning in machine learning� �

A learning paradigm that builds a pairwise model to predict whether pairs
are similar or dissimilar (in the classes that they belong to), including
• metric learning [5]: learn a distance metric function d(xxx,xxx′) that

assigns smaller/larger values to similar/dissimilar pairs
• kernel learning [2]: learn a kernel function k(xxx,xxx′) that aligns well

with yy′ (product of binary labels y,y′ ∈ {±1})� �
Q. Why do we need similarity learning?
Because similarity learning is expected to help improving downstream
tasks, e.g., classification and clustering.
Can we quantitatively demonstrate the benefit of similarity learning?

Setup
Downstream task: binary classification� �

The label set is Y = {±1}. Find a classifier h : X →{±1} that min-
imizes the classification risk:

Rpoint(h) := E
(X ,Y )∼p(xxx,y)

[1{h(X) ̸= Y}]
� �

Formal definition of pairwise supervision� �

Observe X = xxx and X ′= xxx′ independently first, then pairwise supervision
T is drawn from

p(T = YY ′|xxx,xxx′) =

{
η+1(xxx)η+1(xxx′)+η−1(xxx)η−1(xxx′) if YY ′ =+1,
η+1(xxx)η−1(xxx′)+η−1(xxx)η+1(xxx′) if YY ′ =−1,

where η±(xxx) := p(Y =±1|X = xxx).� �

Our formulation of similarity
learning

CIPS: Classifier with Inner-Product Similarity� �

Find a minimizer h : X →{±1} of the pairwise classification error:
Rpair(h) := E

X ,X ′∼p(xxx)
T∼p(T=YY ′|xxx,xxx′)

[
1{h(X) ·h(X ′) ̸= T}

]
.

� �
Main theorem� �

Let Rclus(h) := min{Rpoint(h),Rpoint(−h)}. For any classifier h, 0 ≤
Rpair(h)≤ 1

2, and

Rclus(h) =
1
2
−
√

1−2Rpair(h)
2

.
� �
Corollary: Rclus(h1)< Rclus(h2) ⇐⇒ Rpair(h1)< Rpair(h2) ∀h1,h2

=⇒ Minimizer of Rpair is the optimal classifier up to label permutation
Proposed method� �

Step 1: given {(xxxi,xxx′i,τi = yiy′i)}i, obtain h = argminh R̂pair(h)
Step 2: given {(xxxi,yi)}i, obtain s = argmins∈{±1} R̂point(sh)
=⇒ sh is the optimal binary classifier� �

Remark: We proposed another estimator of s computable with only pair-
wise supervision in the paper (Theorem 2).

Existing formulations
SLLC [1]� �

Step 1: given {(xxxi,yi)}i, learn similarity K(xxx,xxx′) = xxx⊤Axxx′ by

min
A

1
n

n

∑
i=1

ℓ

(
yi︸︷︷︸

true label

,
1
n′

n′

∑
l=1

y′lK(xxxi,xxx′l)︸ ︷︷ ︸
aggregated label for xxxi

)

Step 2: given {(xxxi,yi)}i, learn a kernel classifier with kernel K
Drawback: Step 2 requires the usual sample complexity Op(n−1/2)

� �
SD [4]� �

given {(xxxi,xxx′i,τi = yiy′i)}i, learn a classifier by minimizing an unbiased
estimator of Rpoint(h) (computable with only pairwise supervision)
Advantage: no need of Step 2
Drawback: the unbiased estimator is undefined at p(Y = 1) = 1

2� �

Comparison of formulations
Table 1: n indicates the number of paired data in Step 1, and the number of pointwise data in Step 2.

Sample complexity of
p(Y = 1) = 1

2 Step 1 Step 2
CIPS 3 Op(n−

1
4) Op(e−n)

SLLC [1] 3 Op(n−
1
4) Op(n−

1
2)

SD [4] undefined Op(n−
1
2) (unnecessary)

CIPS works even with p(Y = 1) = 1
2 and its Step 2 is very cheap!

Experiment
We validate that binary classification is possible with Rpair (Step 1).
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Setup: MNIST odd/even classification
• Model: f (xxx) = www⊤xxx+b
• Loss: logistic loss
• Optimizer: SGD (learning rate: 10−2)
• Evaluation: Rclus

Baseline: SV (Supervised) with the same setup
Remark: n is the pairwise dataset size for CIPS
and the pointwise dataset size for SV
Result: CIPS performs better than theoreti-
cally expected; because the sample complexity is Op(n−1/4) with n pairs,
CIPS is expected to perform comparably to SV with O(n2) pairs.
Remark: To connect f : X →R to h : X →{±1}, justification by Theorem 3 (in the paper) is needed.
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