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Once upon a time ... 44
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200b: supervised, metric learning 6/64
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From supervised to unsupervised 4

. 2020: unsupervised
1993 d
SHPETVISE ﬁ SiMCLR [Chen+ 20]

Maximize agreement
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Chen et al. (2020) A Simple Framework for Contrastive Learning of Visual Representations



From supervised to unsupervised S

ﬁ 2020: unsupervised
SIMCLR [Chen+ 20]

Maximize agreement

1993: supervised
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e ‘ :
e T B
' g o ? . .
- T a .
+ ‘ v « iy :
’ >, . < i
-
. ) .
; ., 4
-39 E >
FY - 3 e . £ < -
. e ¢ .";'-"’1..' e 2 B Y| ¥
-3 i e - y W o w =
. i IR < Cr 4 3
A 1™ f /i P - -
; _ v - AL - - y v
U ~ -4 - T " - - K E
) f.‘.'{‘i 1 |\ M 3 o ! .
. T e o ke, Y\t ST - . N o -
- - 4 8 ' A y B
Vs e : . - -,
' ) r —~ —_— -
.’ R . M~ R O n T I~
H » . ~ « o, o ? ~y
¢ g g : S DA o - :
| o} | S Be e,
N\ b, at < ’ " M -~ ol e
. ¥ ol < e - . e . | vf 3 s
o ) <) : Sl v, -
% “l‘Xr ! I\ 3 ¢ -‘;‘-vi' 5%, . - . LN e 1
> 4 Y - "t 1 B - - .
B Ty 44 e § ) 1 )

(a) Original (b) Crop and resize  (c) Crop, resize (and flip)

Chen et al. (2020) A Simple Framework for Contrastive Learning of Visual Representations



CLIP: multi-view representation learning

(1) Contrastive pre-training
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Radford et al. (2021) Learning Transferable Visual Models From Natural Language Supervision.



Massive negative sampling %

ored
encoder @ o

SIMCLR [Chen+ 20]

Chen et al. (2020) A Simple Framework for Contrastive Learning of Visual Representations



Massive negative sampling A

SIMCLR [Chen+ 20]

encoder

Chen et al. (2020) A Simple Framework for Contrastive Learning of Visual Representations
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Chen et al. (2020) A Simple Framework for Contrastive Learning of Visual Representations



From contrastive to NON-contrastive 2

ored
encoder @ Fond

sSimsSiam [Chen-He 21]
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Chen & He (2021) Exploring Simple Siamese Representation Learning.
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From contrastive to NON-contrastive %

sSimsSiam [Chen-He 21]

encoder

Chen & He (2021) Exploring Simple Siamese Representation Learning.



From contrastive to NON-contrastive >4

encoder @

sSimsSiam [Chen-He 21]

ored

® Data augmentation
® Prediction head (but at anchor side only!)

® Stop gradient

Chen & He (2021) Exploring Simple Siamese Representation Learning.



From contrastive to NON-contrastive "%,

simsSiam [Chen-He 211

® Data augmentation
® Prediction head (but at anchor side only!)
® Stop gradient How to avoid constant encoder?

trivial

Chen & He (2021) Exploring Simple Siamese Representation Learning.



What we can learn
from nonlinear dynamics and neuroscience

Bao, H. (2023)
Feature Normalization Prevents Collapse of Non-contrastive Learning Dynamics.
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Linear [Tian+ 21]

Theoretical model of SImSiam

« =Data augmentation = ,Linear encoder |
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Tian et al. (2021) Understanding self-supervised learning dynamics without contrastive pairs.
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Linear [Tian+ 21]

Theoretical model of SImSiam

« =Data augmentation = ,Linear encoder |
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/
x,x ~ N(xq,0°I)
Strength of data aug

Tian et al. (2021) Understanding self-supervised learning dynamics without contrastive pairs.
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[Tian+ 21]

Theoretical model of SImSiam

L[|[W®x — StopGrad(®x’) H%

Tian et al. (2021) Understanding self-supervised learning dynamics without contrastive pairs.
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[Tian+ 21]

Learning dynamics

1
L(®,W) = _F

W®x — StopGrad(®x)||3

weight decay

Discrete time P(t+1)=®(t) —n(VaLl + pP(t))

gradient descent W(t+1)=W(t) — H(VW[fE-F pW(t))

l o T e
Continuous time P = —VaoLl — p®
gradient flow W= —Vwl — W

Tian et al. (2021) Understanding self-supervised learning dynamics without contrastive pairs.



Analysis overview: Eigenvalue decomposition "%

[Tlan+ 21]
Matrix dynamics: not easy to deal with
d=-Val—pd &' =F F = —2(1 + 0?)W?F + 2WF — 2pF
o —> °
W =-Vwl - pW - W=—(14+0")WF +F — pW
s : j-th eigval of F
p: j-th eigval of W
Scalar dynamics: §=-2(140°)p~s + 2ps — 2ps
enabled by eigendecomposition D= _(1 4 02)]93 + s — pp

Tian et al. (2021) Understanding self-supervised learning dynamics without contrastive pairs.



Recap: gradient flow — decoupled dynamics %o

[Tian+ 21]
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Tian et al. (2021) Understanding self-supervised learning dynamics without contrastive pairs.



Goal: How to avoid trivial solution? 2%

[Tian+ 211
Simultaneous ODE
§=—2(1+0%)p°s + 2ps — 2ps
: 2
B P — _(1 T 0 )ps S — pp ® Two params: ¢ (data aug) & p (weight decay)

Adiabatic elimination ® Q. How to avoid constant predictor?

® Q. How to avoid p=0"7

—igval ODE of predictor
p=p{l—(1+0%)p} — pp

Tian et al. (2021) Understanding self-supervised learning dynamics without contrastive pairs.



Quick pre-requisite 25,

@ Stability analysis of ODE p = f(p)
® p = 0 1s equilibrium (but can be unstable)

®If f(p) <0: stable @ If f(p) > 0: unstable

because f(p) head for the equilibrium locally




Bifurcation: too strong weight decay collapses %

[Tian+ 21]

~igval ODE of projector
p=p{l—(1+0%)p}—pp

Case(a): p=0

Tian et al. (2021) Understanding self-supervised learning dynamics without contrastive pairs.



Bifurcation: too strong weight decay collapses .

[Tian+ 21]

~igval ODE of projector
p=p{l—(1+0%)p}—pp

: 1
Case(a): p=0 Case (b): p < 4(14+02)

Tian et al. (2021) Understanding self-supervised learning dynamics without contrastive pairs.



“igval OD

Bifurcation: too strong weight decay collapses %

[Tian+ 21]
- of projector
. 2 2
p=pAl—(1+0°)p}—pp
Case (a): p = 0 Case (b): p < 4(1i02) Case (¢): p > 4(1i02)
D)

strong weight decay:
trivial solution p = 0 only

Tian et al. (2021) Understanding self-supervised learning dynamics without contrastive pairs.



® Bao 23] Intensitying WD keeps working

® /0 smal
(to ente

learn

- grad

But is this really happening?

® Pilot study: simsiam on CIFAR-10

% evaluation: linear probing accuracy

® [Chen-He 2 1] Let's use small enough WD!

INg rate
ient flow regime)

Accuracy (%)

40 -
30 - — p=107"
—— p=10"2
20 - —— p=10"% (default)
1 R ————
0 20 40 60 380

Epoch (fine-tuning)

larger WD p still works
= accuracy does not breaks down

29/4

o




What differs from practice?

s o L(B, W) = % 2[Wdx — StopGrad(®x')||2

S | (W®x, StopGrad(Px'))
SimSiam impl — I
amimg L8 W) =B = 1 x| [StopGrad (@x')]|




Cosine loss may prevent collapse >

® If collapsing (p = 0), predictor goes to zero W = O, blowing up cosine loss

(W®x, StopGrad(®x’))

o HStopGrad (Px)||

What does the cosine-loss dynamics look like?




32/4

o

Challenges of cosine loss: normalization

(W®x, StopGrad(Px'))
|W®x||||StopGrad(®x’)||

L(®, W) =E

® [aking derivative wrt normalizer makes gradient complicated

® Solution: high-dimensional limit

frequency

100

dim=2

frequency

norm of random vector concentrates on a hypersphere

120 -

dim=64

frequency

150 A

125 ~

—
NS g O
wn o w»m O

dim=1024
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o

Challenges of cosine loss: normalization

(W®x, StopGrad(Px’))
|'W®x||||StopGrad(®x’)||

L(®,W)=E

® [aking derivative wrt normalizer makes gradient complicated

® Solution: high-dimensional limit

[Chen-He 21] dim=1024

150 -

e Prediction MLP. The prediction MLP (h) has BN applied 125 -
to its hidden fc layers. Its output fc does not have BN e
(ablation 1n Sec. 4.4) or ReLLU. This MLP has 2 layers.

>
()
o
s 75 4
g
=

50 -

The dimension of A’s input and output (z and p) 1s d = 25 -
2048, and ~A’s hidden layer’s dimension is 512, making h e
a bottleneck structure (ablation in supplement). I

42 Approx ||W®x|| = const.
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b =—-Val —pP >

W — —VWC — ,OW
Tian+ 21]—I I—Cosine |0SS

l—l_Z loss | —l

. , 2 2

S — —2(1 + 0'2)]?28 + 2]?8 — 2,08 %1 = T+ 0?)NaNg (N\%S?P?JFNXSJ'P?—SM) — 2ps;.

. , 1 2
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Bifurcation: collapsed solution is not stable 3%

~igval ODE of projector (C; depends on [[W®x||)

. 201p° + Cop® — C3p?
p p—

PP

1 4 02




Bifurcation: collapsed solution is not stable %

~igval ODE of projector (C; depends on [[W®x||)




- - - - 3
Bifurcation: collapsed solution is not stable %

~igval ODE of projector (C; depends on [[W®x||)

non-trivial solution exists

collapse p = 0 is saddle!




Part 1: What we learn from nonlinear dynamics %

® & Dynamics analysis provides stability analysis beyond analyzing loss minimizer solely
< Why StopGrad”? Why encoder-predictor? etc.

® & Difference loss function may vyield more adaptivity during optimization

2C1p° + Cap® — Csp?
1 + o2

L2 dynamics cosine dynamics

p=p{l—(140c")p}— pp D= pp

® ¢ What we don't answer: feature learning

% since analytical solution to ODE typically requires strong Gaussianity assumptions




What we can learn
from nonlinear dynamics and neuroscience

Ishikawa, S.*, Yamada, M.*, Bao, H., & Takezawa, Y. (ICLR2025)
PhiNets: Brain-inspired Non-contrastive Learning Based on Temporal Prediction Hypothesis.




Predictive coding 4%,

® Brain predicts a future/neighboring nput signal

< dopamine Is secreted It prediction makes a mistake

Contrastive predictive coding [van den Qord+ 18]

Ct Predictions
"~ N .\‘\~\~\ T~ \.\ = \.\.
N, . . ~.
(o f—(my—(o) D
\ ‘\ \‘ \‘
\ ‘\. \'t \
2t Zt+1 Zt+2 Zt+3 Zt+4
/genc\ /genc\ /genc\ /genc\ /genc\ /genc\ /genc\ /genc\
 Xt-3 | Ti—2 | Ti-1 Ttt1 T¢42 Tt+3 Tit4

van den Oord et al. (2018) Representation Learning with Contrastive Predictive Coding.



Predictive coding 4l

® Brain predicts a future/neighboring input signal at various level

Cingulate
gyrus

Hypothalamic nuclel

Amygdala

Corpus
callosum

Thalamus

Hippocampus /

https://en.wikipedia.org/wiki/Hippocampus



Neocortex and hippocampus

HIPPOCaMPUS

Short-term memory

external stimul

Long-term memory

e ,
Neocortex \/ N .

store memory

https://en.wikipedia.org/wiki/Hippocampus
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[Chen+ 24]

Hippocampus as a self-supervised learning model

prediction

()

NeoCortex Entorhinal Cortex

v (

#
external stimuli

synaptic delay

store back

Transmission delay b/w CA3 and CAT1 forms a self-supervised feedback
= with prediction, neural activity is replicated more accurately

Chen et al. (2024) Predictive Sequence Learning in the Hippocampal Formation.
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Temporal prediction hypothesis
Temporgl difference
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additional predictor (CAT)

additional
0SS
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Implementation details o1y,

CA3 predictor CAT predictor

Q@@L

augmented
signals

original
signal

CAT loss

® Encoder f is shared

® All layers are optimized by backprop simultaneously




But why additional predictor? 52,

Analysis model

CAT loss

0 [WEW px1 — SG(Wpxa)||° + [WoW, W pxy — SG(W px) |7
CA3 loss CA1 loss

Disclaimer: cosine loss 1s not considered for simplicity




But why additional predictor? 53,

LW, Wy, Wy) =-E|[[|[W,W;x; — SG(Wsx2)|” + | WyW,Wsx; — SG(W x)||”]

1
2

eigendecomposition
adiabatic elimination

pn ={(1+pg) — (1+0*)(1+p))pa}tpi —ppr  (CA3 predictor)
p, ={1—(1+c%)pn}p; — pp, (CA1 predictor)

ct. SImSiam dynamics

]5 — p2{1 — (1 —+ 0'2)])} — PP (CAS predictor)




PhiNet dynamics (2D)
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PhiNet (2D) vs SimSiam (1D) °%

PhiNet dynamics

— \*EE

extract nullclines

A topologically
p; conjugate




PhiNet (2D) vs SimSiam (1D) %

PhiNet dynamics
———SF
% * Dg. . attraction basin
. ' (wider @)
=S| extract nuliclines §
7 - ; -_—
M,
/v/ !
— /|
4 /ﬁf
- topologically
p; conjugate

SimSiam dynamics extract nuliclines attraction basin
p ) p(H)
-_p—(:o) <= o/~ — > ww< Z;J
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PhiNet dynamics with different weight decay
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PhiNet dynamics with different weight decay :




59/4

PhiNet dynamics with different weight decay :

LIGHT (p = 0.003)
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PhiNet dynamics with different weight decay :

WEAK (p = 0.0001)




Negatively initialized eigval can converge non-trivially °*

WEAK (p = 0.0001)

Simsiam cannot avold collapse
It negatively initialized




Enhanced stability wrt weight decay °%

(a2) Batch size=1024

o 90
O
<
S 80
£a

70

weight decay Welght deca
.Illllllllllllllllllll'
SimSiam

Dataset: CIFAR-10 / Evaluation: KNN accuracy







Interaction bw ML, nonlinear dynamics, neuroscience °*

Self-supervised
representation learning

new modael
—

Cr—
explanation

Neuroscience Nonlinear dynamics




