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Outline

® Part 1: Calibrated surrogate losses
< Q. What are minimum requirements for loss functions?

® Part 2: Loss functions in robust learning

<+ Q. Is it possible to design robust loss functions?




Setting: Binary Classification
® [nput

< sample {(x, yp}, : feature x, € & and label y; € {£1}
® Output: classiflier f: & - R

< use sign(f(-)) to predict labels

“ criterion: misclassification rate Ry,(f) = E [1[Y # sign(f(X))]|

0-1 loss ¢by, (Yf(X))
1if Y # sign(f(X))

oo 0if Y = sign(f(X))
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Surrogate Losses

® Motivation: minimizing O-1 loss is NP-hard

: \

>

no gradient for discrete function easily optimizable if convex and smooth

® Replace O-1 loss with surrogate loss

0-1 loss ¢y (@) = 1{a < 0} surrogate loss ¢(a)
$o1

hinge loss,

wron correct correct 0
J logistic loss, etc.




Elements of Learning Theory

(empirical) surrogate risk

R 1 &
Ry(f)=— 2, pOifo)
=1

Generalization theory:
If model is not too complicated,

then justified (roughly speaking)

(population) surrogate risk

R,(f) = E[p(Xf(X))]

Our interests: Calibration theory

target risk

Ry, () = Elghy, (Yf(X))]




Q. What is a desirable surrogate?

® A. surrogate risk minimizer should be target risk minimizer

For two losses y (target) and ¢ (surrogate), surrogate risk

Definition. Surrogate ¢ is calibrated to target \/\/

if for any £ > 0, there exists 6 > 0 such that for all f,

R,(f) — R;; <0 = R/(f)—R;<e target risk




How to check calibration? !

[Steinwart 2007]
Definition. Surrogate ¢ is calibrated to target y
if for any € > 0, there exists 6 > 0 such that for all f,
R¢(f) R* <5 = R (f) R;‘j < €. % e-0 definition of limit
Rw(f) — le > = R(p(f) — R;; > 0 % contraposition

easy to ask existence

Definition. (callbratlon functlon)
% of 6 > 0 given &

5(8)—-1nfR¢(f) R*'st 'R(f) R*>8

smallest possible 0 given lower bound of target

Disclaimer: calibration function is defined over class-conditional risk to be precise

Steinwart, |. (2007). How to compare different loss functions and their risks. Constructive Approximation, 26(2), 225-287 .



https://link.springer.com/article/10.1007/s00365-006-0662-3

Main Tool: Calibration Function

[Steinwart 2007]

Definition (calibration function)

smallest possible surrogate given lower bound of target

® Provides iff condition

% calibrated to y < 6(¢) > 0 for all e > 0

® Provides excess risk bound

% calibrated to y < R (f) — R% < (5**)_1( Ry(7) — RS )

target risk monotone surrogate risk
A\

minimizing surrogate risk = minimizing target risk
(we know convergence rate in addition)

Steinwart, 1. (2007). How to compare different loss functions and their risks. Constructive Approximation, 26(2), 225-287 .


https://link.springer.com/article/10.1007/s00365-006-0662-3

Case: Binary Classification

[Bartlett et al. 2000]

Calibration function for 0-1 loss

L

5(e) —.11}f Ry(f) — R¥+ st. -R¢ (f) = R¥ e

Po1

smallest possible surrogate given lower bound of 0-1

l iff condition: o(e) >0 Ve >0

calibrated iff minimum risk of non-optimal
. . classifiers
inf { Ry())| Ry () > RE |} > infRy(/) < v
f f minimum risk of all classifiers
fis non-optimal wrt 0-1 loss

® Check the latter condition to see if calibrated
® More simple equivalent conditions available (hext slide)

Disclaimer: several literature defines calibration by the latter condition
P. L. Bartlett, M. I. Jordan, & J. D. McAuliffe. (2006).

Convexity, classification, and risk bounds. Journal of the American Statistical Association, 101(473), 138-156.


https://people.eecs.berkeley.edu/~wainwrig/stat241b/bartlettetal.pdf

Case: Binary Classification

Theorem. If surrogate ¢ is convex, it is calibrated to ¢y, iff
e differentiable at 0,

. ¢'(0) < 0.
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[Bartlett et al. 2000]

hinge loss

A

pa)=[-a, e =¢

squared loss
A

p(@) = (1 - a)’

5(e) = €2

® Most of well-known losses are calibrated

< perceptron loss ¢(a) = [—al, IS not

P. L. Bartlett, M. I. Jordan, & J. D. McAuliffe. (2006).

Convexity, classification, and risk bounds. Journal of the American Statistical Association, 101(473), 138-156.


https://people.eecs.berkeley.edu/~wainwrig/stat241b/bartlettetal.pdf

Outline :

® Part 1: Calibrated surrogate losses

< Q. What are minimum requirements for loss functions?

A. calibration: surrogate minimizer = target minimizer

e confirmed via calibration function
e simple iff conditions for binary classification

® Part 2: Loss functions in robust learning

< Q. Is It possible to design robust loss functions?



Classifier is vulnerable to “attacks” '

[Goodfellow et al. 2015]
® Adversarial attacks:
manipulate predictions by adding imperceptible small noise

+.007 %

* Vel (0.2.9)  sign(v,J(0,,y))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

® More interests in whether our learning method are robust

“ Important in applications such as autonomous driving,
medical diagnosis

Goodfellow, I. J., Shlens, J., & Szegedy, C. (2015). Explaining and harnessing adversarial examples. In ICLR, 2015.



Formulation of Adversary -

@) Standard Iearning: no pena|ty no pena]ty
no penalty If classified to
the correct side of the boundary
o O
® Robust learning: no penalty penalized

prediction close to the boundary

will be penalized even if

correctly classified @
% the boundary will be crossed

over by attacks

< assume L2-ball attack




Standard vs. Robust Learning ]4

® Standard learning: . ® Robust learning:
minimize 0-1 loss . minimize robust O-1 loss
Ry (1) = E[doQFQO)] ¢ Ry (H=E| max g, (XX + A))
: . 2 i

worst Lo-attack

0-1loss ¢y () = 1{a < 0} ;
o1 learn best (min) classifier

under worst-case (max) attack

= robust optimization

wrong correct




Relaxation of Robust Optimization '

® Direct optimization of robust O-1 loss is hard

® Existing relaxation

Not necessarily calibrated to robust 0-1 loss!

< Taylor approximation [Shaham et al. 2018; etc.]

local approximation of original objective
does not necessarily lead to global minimum

< Minimize convex upper bound [Wong & Kolter 2018; etc.]

global minimum of upper bound
does not necessarily equal to minima
of original objective

Shaham, U., Yamada, Y., & Negahban, S. (2018). Understanding adversarial training: Increasing local stability of supervised
models through robust optimization. Neurocomputing, 195-204.

Wong, E., & Kolter, Z. (2018,). Provable Defenses against Adversarial Examples via the Convex Outer Adversarial Polytope

In International Conference on Machine Learning (pp. 5286-5295).
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What is calibrated surrogates?

® Standard learning . @ Robust learning

Surrogate loss

+ o
Q. What kind of losses are
calibrated?
calibrated |
[Bartlett et al. 2006] ; calibrated
M : v

= t0-11
e s = 6 e Target loss = robust 0-1 loss

Ry, (f) = E [¢po, (Yf(X))) | R, (H=E| max ¢y, (Yf(X + A))

AEB)(y)

P. L. Bartlett, M. I. Jordan, & J. D. McAuliffe. (2006).
Convexity, classification, and risk bounds. Journal of the American Statistical Association, 101(473), 138-156.
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Special case: linear model + L2-attack

® Linear model f,(x) = 8"x where ||0], =1

no penalty penalized /
'
O'x >y O'x <y

robust 0-1 loss

max (VX +8) = HIX) <7} = X))

® General case is hard to analyze




Isn’t it a piece of cake?

® Standard learning
s ¢

0-1loss 1{a < 0}

wrong correct

Theorem [Bartlett et al. 2006].
If surrogate ¢ is convex,

1. ¢ is differentiable at 0

2. 9'(0) <0

are necessary and sufficient
for calibration.

P. L. Bartlett, M. I. Jordan, & J. D. McAuliffe. (2006).
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® Robust learning

A
robust 0-1 loss ¢
1{a <y}
wrong non- correct
robust

Conjecture.
If surrogate @ is convex,
1. ¢ is differentiable at @ = y

2.9'(y) <0

are necessary and sufficient?

Convexity, classification, and risk bounds. Journal of the American Statistical Association, 101(473), 138-156.



Main Result o

Theorem [Bao et al. 2020].

Any convex surrogates are not calibrated to robust 0-1 loss
under linear models + Lo attack.

® Intuition (Note: proven by checking é(¢) = 0 for some ¢ to be precise)

1. predictions becomes close to 0 2. predictions close to 0 are regarded
as p(y|x) — % as non-robust
NS
conditional risk 4+ @ conditional risk
forp(y = 1 |/x) < % ‘_. forp(y =1]|x) > % ,
e —o—
B non-
—> <+ wrong robust correct
4@

® Nonconvex calibrated surrogates exist

< e.g. ramp loss _\

Bao, H., Scott, C., & Sugiyama, M. (2020).

Calibrated Surrogate Losses for Adversarially Robust Classification. In COLT, 2020.


http://proceedings.mlr.press/v125/bao20a.html

Summary | 20
Calibrated Surrogates and Robust Learning

® Standard learning . @ Robust learning

Surrogate loss

N . | Result
--------- e no convex calibrated surrogates

e nonconvex calibrated surrogates
exist (e.g. ramp loss)

differentiable at 0 & ¢'(0) < 0

calibrated i calibrated
[Bartlett et al. 2006] E [Bao et al. 2020]

b, under linear model

robust 0-1 loss + Lo-attack

Y

non-

robust correct

wrong  correct wrong

Bao, H., Scott, C., & Sugiyama, M. (2020).
Calibrated Surrogate Losses for Adversarially Robust Classification. In COLT, 2020.
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Summary

® Calibrated surrogate losses: surrogate risk

surrogate risk minimizer = target risk minimizer \ /\/
< can be confirmed via calibration function 1

® Robust learning from calibration perspective: |
: target risk
= NO convex calibrated losses
o - Tal ?
future: how about minimax surrogates” ‘ L—| —
® Take home: |

calibration is interesting not only for minimizer consistency

but also for robust loss design!

< similar idea adopted to analyze robustness
to symmetric label noise [Reid & Williamson 2010]

Reid, M. D., & Williamson, R. C. (2010). Composite binary losses. Journal of Machine Learning Research, 11, 2387-2422.


http://www.jmlr.org/papers/volume11/reid10a/reid10a.pdf

