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Learning theory: how to handle performance metrics for

class-imbalance

[Bao & Sugiyama 19] (in submission)

Reinforcement learning with low-cost data
IWCBTS19] (ICML2019) Imitation Learning from Imperfect Demonstration

Domain adaptation: how to learn when training # test

[IKCBHSS19] (AAAI2019)
Unsupervised Domain Adaptation Based on Source-guided Discrepancy
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Inference in Real-world

® Prediction of President Election [Brownback & Novotny 2018]

» cf. social desirablility bias
» tend to answer in the ways “what others desire”

» unexpected results in 2016 US president election

Hard to obtain real answers!

https://www.270towin.com/2016_Election/

Brownback, A., & Novotny, A. (2018). Social desirability bias and polling errors in the 2016 presidential election.
Journal of Behavioral and Experimental Economics, 74, 38-56.



Inference in Real-world

% Integration of hospital databases [Wachinger & Reuter 2016]
» CAD (Computer-Aided Diagnosis) prevalling
» each hospital has Iimited amount of data

» want to unify among hospitals as much as possible

Data distribution may differ!
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Wachinger, C., & Reuter, M. Alzheimer's Disease Neuroimaging Initiative. (2016).
Domain adaptation for Alzheimer's disease diagnostics. Neuroimage, 139, 470-479.




What's transfer learning?

® Usual machine learning
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Many terminologies: transfer learning, covariate shift adaptation,
domain adaptation, multi-task learning, etc.




Unsupervised Domain Adaptation

Input
» training labeled data: {x;y;} ~ ps

(source)

» test unlabeled data: {x} ~ p;
(target)

Goal

» obtain a predictor that performs well on test data

argmin Erry(g) = E4{£(Y, g(X))]

J no access
» Q. How to estimate the target risk?
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Potential Solutions
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Potential Solutions

Importance Weighting Representation Learning
min  D(g,pr) min D(¢(ps), ¢(pr))
supp(q)Esupp(ps) @

It’s important to measure closeness of distributions!




Divergences

f-diverger% Integral Probability

Metric (IPM)
Hellinger
MMD
KL TV Wasserstein
Cramer

y*>-divergence
Kernel Stein Discrepancy
Jensen-Shannon

__—

Tsallis-divergence p-divergence

Energy distance

. -divergence
Renyi divergence ! J
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Divergences
f-divergenMal Probability

Metric (IPM)
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What is a good measure?

Postulate: classification risks should be closer If
distances between distributions are small

Errr(g) - Errg(g) < D(pr,ps) + C
| EdlA(@)] - Egl£(@)] |

IPM could be a more suitable family!
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» |PM: Dr(p, q) = sup ‘ [Ep[}’] . [Eq[}’] ‘ " : real-valued function class

(e.g. 1-Lipschitz for Wasserstein)
yel’

» represented in difference of expectations

expectation over marginal
of source dist.

Errglg] = [5<g<X>, £SO

loss func. labeling func.

(parallel notation for target domain as well)




Simple Approach: Total Variation

[Kifer+ VLDB2004]

Total Variation Dyy(p,q) =2 sup ‘ p(A) — q(A)‘ p-a 8re cistributions

over &
A:mes’ble

classification risk bound
Errp(g) — Errg(g) <
DTV(PsaPT) + min{[ES[ |fs —fT 1, Erl |fs —fT |1}

Problems e

» TV is overly pessimistic with arbitrarily large TV

V—

» TV Is hard estimate within finite sample _
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Kifer, D., Ben-David, S., & Gehrke, J. (2004, August). Detecting change in data streams. In Proceedings of the
Thirtieth international conference on Very large data bases-Volume 30 (pp. 180-191). VLDB Endowment.



First Attempt: A% -divergence '*

[Kifer+ VLDB2004:; Blitzer+ NeurlPS2008]

Definition (#7-divergence)

Dy(p.q) = 2sup |p(eX) = 1) —q(eX) =1)| ; % c {+1}7
gEH

» Do (p,q) < Dryv(p,q) by def. = could be less pessimistic
» estimator D.(p,q) can be computed by ERM in % (omitted)

Lemma (finite-sample convergence)
Let d = VCdim(#). Then, with prob. at least 1 — 6,

A ~ 1
Do (ps, p1) < Dg(ps, pr) + Op < . >
| | \/mln{l’ls, nT}

empirical estimator f
Dy (ps. pr) = 2 sup

1 1
ng ers Ligw=1) ~ nr erT Ligw=1)

Kifer, D., Ben-David, S., & Gehrke, J. (2004, August). Detecting change in data streams. In Proceedings of the
Thirtieth international conference on Very large data bases-Volume 30 (pp. 180-191). VLDB Endowment.
Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., & Wortman, J. (2008). Learning bounds for domain adaptation.
In Advances in neural information processing systems (pp. 129-136).



First Attempt: #A%-divergence '°

[Kifer+ VLDB2004:; Blitzer+ NeurlPS2008]

Definition (symmetric difference hypothesis #ZA%)
CEHANH < g=h@h forsomehh'e X (& :XOR)

Theorem (domain adaptation bound)
Let d = VCdim(#). Then, with prob. at least 1 —§, for any g,

1 A ~ 1
Errp(g) < Errg(8) + =Dgag(ps, pr) + O, , + 4
2 \/ min{ng, 1y}

where 1 = min Errg(h) + Errp(h) (Joint minimizer)
he#

Issues
» D, is intractable; though D, is tractable

» ) is intrinsically impossible to estimate; assume to be small

(- Errp cannot be accessed)




Extension: discrepancy measure

[Mansour+ COLT2009]

Definition (discrepancy)

Dgisc./(P,q) = sup ‘Err (g, &) — Err (g,g)‘ Err(g, g') = Jf(g(X) g(X))dp
‘eHXH
> lcl)ss IS generallzed

» intuition: seeking for potential labelings maximizing diff. of losses
» Dy, - €mMpirical estimator of Dy ;i Duestp.a) = sup

g.8' €

Err (g,8") — Err (g.8")

Lemma (finite-sample convergence)

Let Rademacher averages of # on the distribution pg (py resp.)

are bounded by 0,(ng'"*) (0,(n;'""*) resp.). Assume ¢ is Lipschitz cont.
Then, with prob. at least 1 — 4,

A 1
Ddisc,f(pSapT) < Ddisc,f(ps’pT) T OP <\/m1n{n nr} )
NERAd )

Mansour, Y., Mohri, M., & Rostamizadeh, A. (2009). Domain adaptation: Learning bounds and algorithms.
In Proceedings of Computational Learning Theory.
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Extension: discrepancy measure

[Mansour+ COLT2009]

Theorem (domain adaptation bound)

Let Rademacher averages of # on the distribution pg (py resp.) are bounded

by 0,(ng'?) (0,(n;""*) resp.). Assume # is symmetric. Then, with prob. at least 1 -6,
for any g,

— A 1
Errp(g, fr) — Errl < Errg(g, 85) + Dyisc 01(Ps, Pr) + O, ( ) + A

I min{ne, n
= Errp(g7, fr) \/ { >’ T}

where 1 = Erri(g¥, g¥) (joint minimizer)

Issues
» Dy, is generally intractable; needs joint sup of g and g’

(tractable In simple cases)
» ) is intrinsically impossible to estimate; assume to be small

Mansour, Y., Mohri, M., & Rostamizadeh, A. (2009). Domain adaptation: Learning bounds and algorithms.
In Proceedings of Computational Learning Theory.



Comparison of Existing Measures e

Q. Can we construct a tractable/tighter measure?

Q hard to estimate @ DA bound
Q pessimistic Q Intractable

N AN N

N N N
Total D, ~divergence discrepancy o o 7>

Variation [KBG04][BBCPO06] IMMRO9]




Outline

Introduction — Transfer Learning
History/Comparison of Existing Approaches

Proposed Method

Experiments and Future Work

19



Proposed: Source-guided Discrepancy “

ldea: supremum with one variable should be tractable

Definition (Source-guided Discrepancy)

Dy Ap,q) = sup ‘Errp(g,) — Errq(g,)‘  Err(g, g') = Jf(g(X), g'(X))dp

gEH
\ \ fix one function

where g* = argmin Errg(g) (source risk minimizer)
gEH

cf. (discrepancy)

Dyisc /(P-q) = sup |Err,(g:8") — Err,(g,:8")
g,::g/‘::e% C vans?

» Dy AP, q) < Dyise A(p, ) by definition (S-disc is finer)




S-disc Estimator = ERM °!

Consider binary classification (loss function: £,,)

p assume FZ Is symmetric. ge X — —-ge X

Theorem DSd Ol(ps,pT) =] — min Jf (g)

gEH

where J,(g) = Zf(g(xs) *(xs))+—2f(g(xT) g(x)) (cost-sensitive risk)

i=1 | I T J=1 | |
source: labeled by g¥ target: labeled by —g¥

Estimation Algorithm

» train a classifier only using source (g¥)

» minimize cost-sensitive risk J,

Similar idea to #Z-divergence, but we don’t need to use ZAXZ




Finite-Sample Consistency

22

Theorem
| et Rademacher averages of # ® # on the distribution pg (pr resp.)

are bounded by 0,(ng"*) (0,(n;"?) resp.). Then, with prob. at least 1 -6,

A 1
Dy Aps, pr) < Dgq o(ps, P1) + O, ( /min{g ) >
S 1T

@ empirical S-disc is tractable
@ consistent (as well as D, D)

> HRQH =({g-88.8€X)
» Rad(%) = 0,(n""?) = Rad(# ® #) = O,(n"'"?)




Domain Adaptation Bound

Theorem (domain adaptation bound)
| et Rademacher averages of # ® # on the distribution pg (pr resp.)

are bounded by 0,(ng'?) (0,(n;'""?) resp.).
Assume the loss ¢ satisfies the triangle inequality.
Then, with prob. at least 1 — g, for any g,

: +1
\/min{ng, ny}

Errp(g, f1) — Err < Errg(g, g5) + lA)Sdf(pS, pr) + 0, <

where 1= Errp(gf, g¥) (joint minimizer)

® D, ,is tractable
® b, <D, , (always tighter bound)

Q A 1S Impossible to estimate



Summary

24

Source-guided Discrepancy

Dy Ap,q) = :;1; ‘Errp(g,) - Errq(g,)‘

fix one function

DA bound

N A 1
Erry(g, fr) — Ertl < Errg(g, 85) + Dyg Aps, pr) + O, ( ) + A

\/min{ng, ny}

o
®

ractable estimator: can be computed by ERM

Ighter measure

@ DA bound, but still 2 (iImpossible term) exists
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Computational Time “°

S-disc
dy

disc

102 10° 107 10*
Computation time [sec]

d =2, 200 synthetic examples for both source and target
ds 1S an approximator of Dy, 4
» faster, but does not entail DA bound

discrepancy Is computed via approximation

» resorted to semi-definite relaxation



Source Selection

Domains
» source: b clean MNIST-M, 5 noisy MNIST-M
» target: MNIST
(clean MNIST-M is known to be useful for MNIST)
Setup

» measure the distance between target and each
source

2/

» sort In ascending order

5 clean MNIST-M should admit
smaller distance than noisy ones
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Source Selection

—  S-disc €=5H0 —  S-disc =30
S-disc e=40 ——= dy

1000 2000 3000 1000
sample size >

Vertical-axis: # of clean MNIST-M domains in top b

W S-disc successftully capture the difference between
clean and noisy MNIST-M
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Following Work

Source-guided Discrepancy

Dy Ap.q) = :;ly]@; ‘Errp(g,) - Errq(g,‘

fix source-risk minimizer

[Zhang+ ICML2019]

Definition: Margin Disparity Discrepancy @limited to margin loss
4 p(m)
Dyipp, ££(P> q) = sup ‘Effp(ga(f)) - Erfq(&@)‘
gEH
\ k Mfix an arbitrary _0\—;1

DA bound based on MDD

N~ A 1
Err(g, fr) < Errg(g, 85) + Dypp g APs, Pr) + O, ( . ) +4
\/min{ng, ny}

= extended to multi-class (one-vs-all) case

Zhang, Y., Liu, T., Long, M., & Jordan, M. |. (2019). Bridging Theory and Algorithm for Domain Adaptation.
In ICML, 2019.



Conclusion 30

Discrepancy measure I1s Important in domain adaptation
» IPM Is a nice family; can be connected to DA bound

» “fixing one function” would be a good idea
Dy Ap.q) = :;1?1; ‘Erfp(g,) - Eﬂ‘q(g,‘

fix source-risk minimizer

Potential directions

» remove the unestimable term in DA bound (A)

» any “optimality” in DA bound?

rethinking DA framework (adaptation algorithms, available supervision)
might be needed:---



